Supervised learning is perhaps the most central idea in Machine Learning. It is equally central to statistics where it is known as regression. Statistics formulates the problem in terms of identifying the distribution from which observations are drawn; Machine Learning in terms of finding a model that fits the data well.
My masters degree focused on Machine Learning, but when I got my first job as a data scientist, I quickly realized there was a lot I still needed to learn about Statistics. Since then I have come to appreciate the nuanced differences between Statistics and Machine Learning and I'm convinced they have a lot to offer one another!
Generalized Additive Models in Python