This post explores principal stratification and mediation analysis as tools for understanding causal effects, decomposing them into direct and indirect components. It covers scenarios like non-compliance, missing outcomes, and surrogate indices, highlighting the importance of assumptions such as no direct effects and no Defiers. Practical methods, including multiple imputation, regression, and matching, are discussed for estimating effects even when key quantities are unobserved. Real-world examples, like marketing lift studies and product funnels, illustrate the relevance of these techniques for addressing complex causal questions.