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1 Background

Given the initial position and velocity of an object, such as a satellite in orbit around the
Earth, it is possible to determine its position and velocity at any other time by integrating
the equations of motion. This prediction method is called propagating. Specifying the
position and velocity of the satellite at a specific time, called the epoch, is a common way of
representing an orbit. In this context, the position and velocity are known as the Cartesian
orbital elements. Different methods of representing an orbit are in common use and it is rare
to use one representation in isolation. Classical elements are another common representation
that are easily interpreted and propagated. For this reason, classical elements were used in
this project. While providing a thorough background in orbital mechanics is beyond the
scope of this paper, an excellent reference is [PC12], which discusses orbital elements and
propagation in detail.

Given the orbit of a satellite, it is straightforward to compute its distance from a point
on the Earth, such as a ground station, at any time. Ground stations can measure this
distance, called the range, by sending a signal to the satellite. The satellite sends back a
signal after a known delay, which is finally received by the ground station. By measuring
the total transmission time and factoring in atmospheric effects, the range can be estimated
with high accuracy. A ground station may also measure the elevation and azimuth of a
satellite. The issues involved in accurate estimation of these parameters, collectively called
tracking data, are discussed in [TSB04, §3]. For simplicity, in this project we focused on
range measurements only. Accommodating other measurement types is straightforward.

Let fr(x; t) be the range measured by a particular ground station at a particular time
t, provided the orbital elements are given by x and the measurements have no noise. Infor-
mally, fr answers the question: at time t, how far is the satellite from the ground station?
Evaluating fr is nontrivial. We must propagate the orbital elements to the desired time and
account for signal delays to determine the range a ground station would measure at time
t. High fidelity propagators will result in an fr for which analytical formulas are not possi-
ble, and in practice, even simple forms are too complex to differentiate explicitly. Instead,
numerical methods are used to compute gradients approximately.
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Suppose a ground station collects N range measurements at times t1, . . . , tN . Without
noise, the range measurements would be {fr(x, ti)}

N
i=1. Real measurements will be corrupted

by noise; for this reason, {fr(x, ti)}
N
i=1 are called the ideal measurements. Given real mea-

surements y1, . . . , yN at times t1, . . . , tN , we can estimate x by solving the problem

minimize
∑N

i=1
φi(yi − fr(x, ti)), (1)

with data {ti, yi}, variable x, and unspecified penalty functions φi. Solving (1) is called orbit
determination. The solution, x⋆, is a representation of the estimated orbit. References for
orbit determination include [TSB04] and [MG11].

Since fr is not convex, the problem cannot easily be solved globally; however, iterative
methods may be used to find a local minimum based on an initial guess. In Newton’s method,
we repeatedly linearize fr about the current estimate xk and solve (1) to get the next estimate
xk+1. The industry standard is to use φi(r) = wir

2, where wi is a weight that may depend
on considerations such as the type of tracking data (range, azimuth, or elevation). In this
approach, we solve a sequence of weighted least squares problems to estimate the orbit.

While least squares methods have several practical benefits, robustness is not one of
them. While the method of least squares is optimal, in a sense, when the noise is Gaussian,
real noise sources often have fatter tails than Gaussian distributions. We have at least three
noise sources: the tracking data, the model parameters implicit in fr, and the linearization
of fr. If these sources are non-Gaussian, robust methods may outperform least squares. We
therefore set out to solve

minimize
∑N

i=1
φ(yi − f̂k

r (x; ti)) + λψ(x− xk), (2)

where f̂k
r (x; ti) is an affine approximation of fr centered at xk. In this problem, x is the

optimization variable; yi, ti and xk are data. We have two penalty functions: φ is an
unspecified robust penalty on the residuals, and ψ is an unspecified penalty on the estimate
update. We use λ to trade off between competing objectives. We want to find an orbit
estimate that fits the data, but we also do not want to deviate too far from the region where
linearization is a good approximation for the original nonlinear function fr.

When φ and ψ are convex, this is a convex optimization problem. The solution of (2)
forms the linearization point, xk+1, for the next iteration. Note that if this process converges,
the linearization error and update penalty go to zero, which shows the limit of this process
results in a local minimum of (1). In our approach, we solve a sequence of convex optimization
problems to estimate the orbit.

2 Modeling

For simplicity, we used a propagator that assumes the Earth has a perfectly spherical mass
distribution. All effects from other celestial bodies, such as solar radiation pressure and lunar
gravity, were ignored. Since nothing in our approach depends on the form of fr, a higher
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Semimajor axis (km) 20000 20000 20000 40000
Eccentricity 0.4 0.4 0.01 0.8
Inclination 40◦ 40◦ 40◦ 40◦

Right ascension of
the ascending node

0◦ 90◦ 0◦ 0◦

Argument of perigee 0◦ 0◦ 0◦ 0◦

Mean anomaly 0◦ 0◦ 0◦ 0◦

Table 1: Orbits considered, specified in classical elements, with an epoch of 2014/01/01 00:00 UTC

Los Angeles 34◦03′ N 118◦15′ W
Washington D.C. 38◦54′ N 77◦02′ W
Athens 37◦58′ N 23◦43′ E

Table 2: Ground station locations

fidelity propagator could easily be substituted. Atmospheric effects and light propagation
delay were ignored, which greatly simplifies the calculation of fr.

We examined orbits consistent with commercial satellite injection orbits, plus one highly
eccentric orbit we suspected would be challenging to estimate. The classical orbital elements
(see [PC12]) for these orbits are shown in Table 1. We assumed three ground stations, in
Los Angeles, Washington D.C., and Athens. Their coordinates are shown in Table 2. These
locations do not correspond to real ground stations, but have latitudes corresponding to the
inclinations of the orbits considered in this project, and are distributed across the globe,
both realistic features of ground stations used in practice.

While we have access to real tracking data from transfer orbits, it is Boeing proprietary
and unfortunately is not available for this project. For this reason, tracking data was gen-
erated using the nonlinear function fr. Specifically, we propagated the orbits in Table 1 in
one minute increments and computed the distance to the ground stations to generate ideal
range measurements. Range measurements were recorded only when the satellite was at least
10◦ above the horizon from the perspective of the ground station. Since the period of the
orbit—the time needed to make one complete revolution—is a natural unit of time in orbital
mechanics, we considered measurements spanning up to three revolutions, in increments of
half a revolution. Realistic data is mostly low noise, with some outliers. To model this, we
used a mixture of Gaussians approach [Ng13]. Gaussian noise with standard deviation 10
meters, 20 meters, and 1 kilometer were added to 50%, 40%, and 10% of the measurements,
respectively.

Linearization of fr was accomplished using a central difference method. We used a Huber
penalty on the data and an ℓ2 penalty on the update. The Huber penalty has well-known
robustness properties [BV04, §6], and a Euclidean norm is perfect for penalizing deviations
from the linearization point. Thus in the robust problem (2), the penalty functions were
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chosen as

φ(u) =

{

u2 |u| ≤ M

M(2|u| −M) |u| > M,

ψ(x) = ‖(JTJ)1/2x‖22.

In the update penalty, ψ, we included a weight matrix based on the Jacobian. This penalizes
solutions that deviate from the linearization point in directions where the function is changing
rapidly. This approach was inspired by the Levenberg-Marquardt algorithm [Lev44], [Mar63],
and may be thought of as a trust region penalty [Boy14].

3 Adaptive parameter selection

Adapative methods for selecting the Huber penalty parameter, M , and the trust region
weight, λ, were considered. As we near convergence, the residuals mimic the measurement
noise. The Huber parameter should be chosen as the threshold beyond which the noise
ceases to appear Gaussian. A Q-Q plot is useful for visually assessing whether a distribution
is Gaussian [WG68]. We took a different approach, based on a mixture of Gaussians model
[Ng13]. We implemented an Expectation-Maximization procedure in which the residuals
were clustered into two groups based on an estimate of two Gaussian distributions. The
parameters for those distributions were then estimated based on the residual points in each
group. This clustering-then-estimating procedure was applied iteratively until convergence.
The Huber parameter was chosen to be the standard deviation of the lower-noise distribution.

To select λ, we compared the expected improvement in residuals based on the affine
approximation to the actual improvement observed using the nonlinear model. Let

δ̂ =
m
∑

i=1

φ(yi − fr(x
k; ti))−

m
∑

i=1

φ(yi − f̂k
r (x

k+1; ti)),

δ =

m
∑

i=1

φ(yi − fr(x
k; ti))−

m
∑

i=1

φ(yi − fr(x
k+1; ti)).

Here, δ̂ is the predicted improvement in the residual penalty, and δ is the actual improvement
seen. If δ ≥ αδ̂, for a value of α reasonably close to 1, then the prediction was accurate,
implying the affine approximation was valid. In this case, we may try to increase the effective
size of the trust region by decreasing λ to λ/βsucc for some βsucc > 1. On the other hand, if
δ < αδ̂, that implies the affine approximation was invalid. In this case, we decrease the size
of the trust region by increasing λ to λ/βfail for some βfail < 1. We used α = 0.1, βsucc = 1.1,
and βfail = 0.5.
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(a) Orbit 1
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(b) Orbit 2
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(c) Orbit 3

Figure 1: Accuracy of least squares and robust methods.

4 Results

We carried out the above program for the orbits shown in Table 1, with ten IID sets of
measurements for each orbit, method, and timespan considered. A robust method using a
fixed Huber penalty parameter, M = 0.015, was used, as well as a method in which this
parameter was adaptively selected as described in §3. Adaptive trust region weighting was
used in both methods. Least squares was also used for comparison. In summary, we examined
three methods of orbit determination on four different orbits using six different data sets
(differing in the number of orbital revolutions) for ten different measurement realizations.

Figure 1 shows the median of the position errors, defined as the distance between the
estimated and actual satellite positions at the time of the orbit epoch. The median is over
the measurement realizations. Median was used instead of mean since there was a single
outlying result (third orbit, fixed M) that skewed the average. The figures suggest that
least squares methods have a knee in the curve: it seems data spanning at least one orbital
revolution is needed for an accurate estimate. Indeed, it is popularly believed in industry
that accurate orbit determinations are impossible when using less than one full revolution of
data. On the contrary, robust methods do well even with data spanning only half an orbital
revolution, and do not significantly benefit from longer timespans. It would be interesting
to investigate even shorter timespans.

In the cases examined, the performance of the adaptive strategy for selecting the Huber
penalty parameter, M , was sporadic. It often worked well, but when it failed, results were
significantly worse than when using a fixed M = 0.015. This is clearly seen in the figures.
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Figure 2: Convergence rates of least squares and a robust method.

We are optimistic our approach may be modified to provide more consistent results.
Figure 1(c) shows a few instances where least squares converged to a local optimum far

from the real orbit. Robust methods still performed well in this case—except in a single
instance not reflected in the median—perhaps due to the trust region penalty.

The results for the fourth orbit are not shown. This orbit was selected as an extreme case
that would be difficult to estimate. In every case examined, least squares failed to converge,
while the robust methods converged to points thousands of kilometers from the true orbit.
This shows that our method is not immune to the effects of non-global local minima.

Figure 2 shows the convergence rates of least squares and the robust method using a
fixed value M = 0.015, for a representative case. In this case, the methods converged to
estimates with similar residual penalties, but the robust method converged more quickly.
We suspect this is due to the trust region penalty. Without this, the solutions of the initial
iterations of the least squares method are free to wander far from the linearization point. The
resulting estimates have small residuals, but only relative to the linearized objective, which
is a poor approximation of the true objective far from the linearization point. Consequently,
the solutions found by least squares in the early iterations are untrustworthy. The algorithm
jumps from untrustworthy estimate to untrustworthy estimate until, by luck, an estimate is
found close enough to the true solution that the linearization is valid. At that point, the
algorithm begins to make progress. In contrast, the trust region penalty ensures the linear
approximation is valid at the solution of each robust iteration, and convergence is fast.

5 Future work

Our next step will be to incorporate a high-fidelity propagator. We will then be able to
apply our method to real data. In practice, an initial orbit determination is used to identify
outlying measurements, which are then removed before performing a final orbit determina-
tion. Considering our results, robust methods eliminate the need for this step; however, to
give least squares fair consideration, we will implement automatic data culling. If real data
is Gaussian-plus-outliers, least squares methods with data culling will likely outperform our
robust methods, since least squares is optimal for Gaussian measurements. Thus, the real
test of our approach is yet to come.
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