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I. INTRODUCTION

Star photography is a popular hobby amongst those graced
with a clear, dark night sky. While a knowledge of astronomy
is by no means a prerequisite, it lends a greater appreciation for
the photographer’s place in space and time. Part of the appeal
is knowing the constellations we see at night are virtually
identical to those that guided the earliest mariners. Stellar
navigation is still used today, not only in terrestrial applications
but also for attitude determination for Earth-orbiting satellites
[1]. Clearly, identifying stars continues to be a crucial task.

Today this task is performed most frequently by specialized
devices such as star trackers, which translate an image of the
sky into an attitude which is used to inform attitude control
algorithms onboard satellites. Quick, robust, and precise star
tracker algorithms form the backbone of any Stellar Inertial
Attitude Determination (SIAD) system. These algorithms typ-
ically compare the magnitude and the inter-stellar angles of
the brightest points in an image with values in a database
to determine which constellation is within the field of view.
The identity and orientation of this constellation then uniquely
determines the attitude of the spacecraft.

Identifying stars taken from generic, ground-based cam-
eras presents many challenges star-trackers do not face. Star
trackers take photographs specifically for the purpose of
determining attitude. The recognition algorithms are tailored
specifically for the camera in use, and the camera concept
of operations is designed to result in a high probability of
successful recognition. Atmospheric noise is negligible, the
field of view is clear, and the lens properties including focal
length, aperture size, and aberration, are known. This project
faced challenges star-trackers do not encounter, but these were
addressed by the concepts and techniques of Digital Image
Processing discussed in EE368: color coordinate frames, im-
age thresholding and binarization, region labeling and de-
blurring via Wiener deconvolution.

II. ELIMINATING CLUTTER

Fifteen images were selected from the author’s collection,
taken over the years in various locations far from light
pollution. Some pictures contained only astronomical objects
(stars, galaxies, and one image that appears to include Venus),
while others included trees, clouds, and airplanes. The first
task was to remove as many of the non-stars as possible. A

flexible framework was developed to permit the user to filter
out clutter via several methodologies.

A. Filtering in the HSV Domain

Stars, although small, tend to be brighter than other objects
in the night sky. Filtering based on the hue, saturation, and
value of pixels permitted the removal of most of the clutter
including trees and clouds. Because stars come in all colors,
filtering on hue would eliminate stars; however, used in
conjunction with the color information from a star catalog, this
might actually be desirable. This stage is optional. Example
outputs of this stage are shown in Fig. 2b and 4b.

B. Locally Adaptive Thresholding via Otsu’s Method

Some images contained more light pollution than others,
having a red background instead of black, motivating the
use of Otsu’s method for binarization. Many of the images
prominently featured the Milky Way, so the density of stars
and background brightness varied across the image. Conse-
quently, a locally adaptive approach was employed. The image
was divided into steps, and Otsu’s method was applied in
the vicinity surrounding each step. The step was binarized
according to the pixel values in this vicinity. This methodology
ensured the threshold did not change drastically from step to
step. To reduce the overall number of stars in the image,
this step restricts the fraction of pixels in each step that
may be non-zero. Steps containing too many stars are erased
completely. Fig. 3b shows the result of this procedure. Note
that much of the Milky Way has been removed. There are so
many stars in this region, that it cannot be reliably used with
our algorithm due to small uncertainties in position.

C. Filtering Based on Area

Though they vary greatly in apparent magnitude, all stars
appear as point objects.1 If they occupy more than one pixel in
an image, it is due to imperfections in focusing ability, due to
chromatic aberration, for instance. Star trackers are intention-
ally defocused slightly for just this reason. Nonetheless, since
stars are small, it makes sense to eliminate any residual objects
larger than a certain size. This is a simple application of region
labeling. Fig. 4c shows an application of this procedure. Note
that some pixels from the trees remain.

1One of the largest and most luminous stars in the universe, Betelgeuse
subtends an angle of .e− arcseconds, based on its actual radius and
distance from Earth.



D. Suppressing Star Trails

The rotation of the Earth leads to the apparent motion of
the stars in circles about the celestial pole at a rate of ◦ per
sidereal day or a quarter of a degree per minute, leading to a
star trail of length dependent on the duration of image capture.
Often these star trails add æsthetic value, but just as often they
are an unfortunate side-effect of our angular momentum. They
are an example of nonlinear motion blur, and are discussed
thoroughly in [6].

Small star trails are approximately linear and can be de-
blurred via a Wiener filter using a point-spread function
corresponding to the length and orientation of the star trail
itself. The noise was assumed constant across the entire image
and was estimated by dividing the grayscale image into tiles,
computing the variance of each tile, and then selecting the
tenth percentile value.

Both the length and orientation of the star trails depend on
the location of the star relative to the celestial pole and hence
vary across the image. Like the locally adaptive thresholding
stage, the binary image was divided into steps, and the star
trails within the vicinity of a step were examined to determine
an average length and orientation. This was used to deblur the
corresponding region of the grayscale image. The image was
then re-binarized. This methodology didn’t work very well,
unfortunately, as Fig. 5c illustrates.2

III. SPHERICAL TRIGONOMETRY

After the filtering stages, the centroids of the remaining
objects were determined via region labeling. The angles
between triplets of stars were computed. These were then
compared against the angles computed from the SKY2000
Master Catalog [4].

The SKY2000 Master Catalog contains information on
nearly three hundred thousand stars. To simplify the search
problem, we used only stars having an observed visual
magnitude brighter than five. The catalog contains the right
ascension and declination of each star. The right ascension and
declination determine the location of a star on the celestial
sphere, which is a sphere of infinite radius centered at the
center of the Earth. Declination is measured with respect to
the celestial equator which lies in the same plane as the equator
of the Earth and can be thought of as celestial latitude. Right
ascension is measured eastward from the vernal equinox and
can be thought of as celestial longitude.

Finding the arclength between two stars is equivalent to
finding the distance along the surface of the unit sphere
between two points. The cosine of this angle is simply the
dot product of the two vectors pointing from the origin to
the points on the surface having the appropriate latitudes and
longitudes. For a point at latitude θ and longitude φ, the

2A disproportionate amount of time was spent on this feature relative to
the benefits it granted. C’est la vie.

Fig. 1. Spherical triangle

corresponding vector in Cartesian coordinates is

~v =

 cos(θ) cos(φ)

cos(θ) sin(φ)

sin(θ)


so the arclength a connecting two points at (θ1, φ1)
and (θ2, φ2) is given by

cos(a) = cos(θ1) cos(θ2) cos(φ1) cos(φ2)

+ cos(θ1) cos(θ2) sin(φ1) sin(φ2)

+ sin(θ1) sin(θ2)

= cos(θ1) cos(θ2) cos(φ1 − φ2) + sin(θ1) sin(θ2)
(1)

To compute the angles between triplets of stars, the spherical
law of cosines may be used:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ) (2)

where a, b, and c are the arclengths separating the stars at the
vertices of the triangle, and γ is the angle subtended at the
vertex opposite side c (see Fig. 1).

Given the right ascensions and declinations of three stars
we can compute the arclengths of the segments connecting
them using (1), and use these in (2) to determine the angle γ
between a triplet of stars.

IV. IDENTIFYING STARS

Star trackers and other applications use a variety of algo-
rithms for identifying stars [5], all starting from a carefully
chosen subset of a star catalog. Because a good star catalog
will contain every star an Earth-bound observer might see,
using the entire catalog virtually guarantees a match. However,
the curse of dimensionality rears its ugly head in most cases,
as we will see shortly. Thus it is important to use as small a
subset as will permit a high probability of successful detection.

Polygon algorithms compare constellations of n bright stars
found in the image with constellations from the catalog,
considering the distance between stars as well as the angles



between star triplets. Some additionally filter on the observed
visual magnitude, but this is less reliable due to a variety of
factors, including numerical issues for faint stars[3].

The simplest polygon algorithm, the triangle algorithm
operates on triplets of stars. For our applications, using the
distance between stars was not an option, since this depends
on the angle of view, which in general is unknown. Contrast
this against a given star tracker, that always has the same
angle of view. The angles between triplets of stars are also
distorted depending on the angle of view and position of the
vertex within the field of view. The sum of the angles of a
spherical triangle always exceeds one; Girard’s theorem states
that the angular excess is proportional to the surface area of
the triangle. The image of the spherical triangle on the focal
plane is a planar triangle, whose angles sum to ◦. Thus, the
true vertex angles of any given constellation will exceed those
captured in an image, with greater distortion for constellations
taking up a larger portion of the sky. Position uncertainties
in star locations will also distort these angles, with greater
distortion for smaller constellations. Both these problems can
be overcome by choosing the angle of view to be within an
appropriate range. Unfortunately, without knowing the angle
of view, the amount of distortion is indeterminate, so we use
a tolerance in the matching algorithm.

Including more stars in our constellation compensates for
the larger number of matches anticipated in light of the pre-
ceding discussion, but the number of constellations increases
combinatorially with the number of stars per constellation.
Thus, as stated in [5], ‘star constellation is hard and compli-
cated to identification.[sic]’. It is a balancing act: choosing a
field of view that is large, but not too large, using catalogs and
constellations with as few stars as possible while using enough
stars to provide robustness against angular distortions.3

Our algorithm relies on a properly prepared constellation
definition file. A constellation is defined as three stars, sorted
by magnitude so that the first star is the brightest. A constella-
tion has three angles associated with it (since the angles don’t
sum to ◦ as usual). Thus our constellation definition file
has six columns: three for the star numbers and three for the
angles.

A subset of the star catalog was created consisting only of
stars having magnitude brighter than five, with roughly 
entries. There are roughly  million unique constellations
consisting of three stars from this list. This list was pared
down by limiting the angular separation of the stars within a
constellation. Stars must be separated by at least ◦ and at most
◦, giving a list of roughly . million suitable constellations.

The constellations in the image were considered similarly.
Starting with the brightest stars, constellations are formed,
and their angles compared against the database. Keeping in
mind the brightness of stars cannot be perfectly trusted, the
order of the angles must be permuted in all six possible ways

3We do not even consider here more advanced matching algorithms which
utilize neural networks or genetic algorithms, citing the oft-quoted adage,
‘If you’re using neural networks to solve your problem, you now have two
problems.’

when comparing. If no matches are found, the next brightest
constellation in the image is considered, and so on. The first
match found is considered correct. A better solution would be
to add a fourth star to the constellation and compare those
angles against the database, but this was not completed due to
time constraints.4

V. FUTURE WORK

The Wiener deconvolution step could be improved using the
techniques discussed in [6]. The final identification step still
needs to be tested more thoroughly.
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4Frustratingly enough, Matlab is still churning away looking for a match.



(a) Original image (b) Image after HSV filtering

Fig. 2. Effects of HSV filtering

(a) Original image (b) Image after binarization

Fig. 3. Locally adaptive thresholding



(a) Original image (b) Image after HSV filtering

(c) Image after area filtering

Fig. 4. Effects of HSV and area filtering



(a) Original image (b) Image after HSV filtering and binarization

(c) Image after Wiener deconvolution

Fig. 5. Effects of star trail suppression


